

(PP3302) Expressway Connectivity and Economic Growth: A Case Study of Vietnam

Minh Tu TRANa, Hajime SEYAb, Shunta AOKIb

- ^a ALMEC Vietnam Corporation, Hanoi, Vietnam
- ^b Graduate School of Engineering, Kobe University, Kobe, Japan

Introduction

- A few studies on the relationship between transportation and economic growth. have been conducted in developing countries, primarily owing to the unavailability of data.
- Therefore, we present a method for estimating the impact of expressway connectivity on economic growth with minimal data, based on a case study of Vietnam.

Objectives

This study aims to test three following hypotheses:

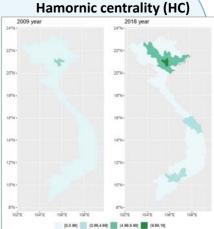
- 1) Better expressway connection may increase FDI capital and projects
- 2) Better expressway connection may lead to higher in-migration and population growth
- 3) Better expressway connection may increase the number of road passengers

Data & Method

- Data: Annual road connectivity data and outcome data (e.g., population and FDI capital) for 63 provinces from 2009 to 2018
- Method:
- 1) Three types of centrality indices are used to measure the expressway connectivity.
- 2) A conventional two-way fixed effects model is used to estimate the influence of expressway connectivity on outcome variables

$$C_{D,road}(i) = \sum_{j=1}^{N} a_{ij}$$
 $C_{D,road}(i)$: The degree centrality of vertex i $a_{ij} = 1$ if province i was connected to

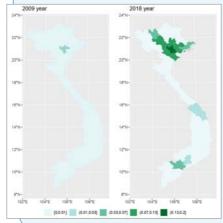
province j through expressways


path exists, $r(i,j) = \infty$.

$$C_{H,road}(i) = \sum_{j}^{N} \frac{1}{r(i,j)} = \begin{cases} C_{H,road}(i) \text{: The harmonic centrality of vertex i} \\ r(i,j) \text{ is no. of edges included in the shortest path from province } i \text{ to } j. \text{ If no} \end{cases}$$

$$C'_{H,road}(i) = \sum_{j}^{N} \frac{1}{r'(i,j)} - \begin{bmatrix} C'_{H,road}(i) : \text{ The } \frac{\text{distance-weighted}}{\text{(DW) harmonic centrality}} \text{ of vertex } i \\ r'(i,j) \text{ is the shortest distance from province } i \text{ to } j \text{ in the expressway network} \end{bmatrix}$$

Estimation Results



Outcome variables	Parameter of DC	R2 Adjusted	RMSE			
Population	0.003	0.998	0.02			
In-migration rate	0.036 (+)	0.793	0.39			
Out-migration rate	-0.019	0.669	0.33			
FDI capital	0.043	0.925	0.64			
FDI projects	0.044 (*)	0.943	0.42			
No. of road passengers	0.018 (**)	0.996	0.08			

Outcome variables	Parameter of HC	R2 Adjusted	RMSE
Population	0.0008	0.998	0.02
In-migration rate	0.029 (*)	0.795	0.39
Out-migration rate	-0.015	0.67	0.33
FDI capital	0.064 (*)	0.927	0.63
FDI projects	0.038 (*)	0.943	0.42
No. of road passengers	0.011 (**)	0.996	0.08

+: p<0.1; * p<0.05, ** p<0.01, *** p<0.001

DW hamornic centrality

Outcome variables	Parameter of DWHC	R2 Adjusted	RMSE
Population	0.038	0.998	0.02
In-migration rate	2.766 (**)	0.795	0.39
Out-migration rate	-1.967	0.673	0.33
FDI capital	5.719 (*)	0.927	0.63
FDI projects	3.945 (**)	0.944	0.41
No. of road passengers	1.104 (***)	0.996	0.08

Robustness checks: By controlling for average wages & population as a proxy variable of job opportunities, DWHC are still statistically associated with the following outcome variables:

(1) Out-migration rates; 2) FDI capital/project, 3) No. of road pax

Conclusion

- The DW harmonic centrality *positively impacted* the inmigration rate, FDI capital, FDI projects, and the number of road passengers.
- the construction of expressways promotes short- and long-term human (and logistic) flows and attracts FDI.
- → Usefulness of DWHC developed in this study